If it's not what You are looking for type in the equation solver your own equation and let us solve it.
32=4w^2
We move all terms to the left:
32-(4w^2)=0
a = -4; b = 0; c = +32;
Δ = b2-4ac
Δ = 02-4·(-4)·32
Δ = 512
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{512}=\sqrt{256*2}=\sqrt{256}*\sqrt{2}=16\sqrt{2}$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16\sqrt{2}}{2*-4}=\frac{0-16\sqrt{2}}{-8} =-\frac{16\sqrt{2}}{-8} =-\frac{2\sqrt{2}}{-1} $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16\sqrt{2}}{2*-4}=\frac{0+16\sqrt{2}}{-8} =\frac{16\sqrt{2}}{-8} =\frac{2\sqrt{2}}{-1} $
| 3x=532 | | 2x-11=3x+4 | | 2x(3)=5x(3/4) | | 39+2x+15=180 | | 4m+4m=-16 | | 2-f=3f-10 | | 6x+4x=152 | | 9x+57=180 | | 3x+5-x=27 | | 12+7x-21=-8(3-×)+4x | | 8x-10x+23=67 | | -2q=-3q-7 | | r-5/6=-1 | | 6=11u-9u | | 6c=9+5c | | 5n-34=14-n | | 4(r−865)=304 | | 5y+65=715 | | 17k-20k+-12k=15 | | 6k+2k-8k+3k=6 | | 26p+50=180 | | 10=23-c | | 7c-4c=15 | | 152÷n=54 | | 4x-40=2x+20 | | -3v=-2v-10 | | H=14.00+0.09x | | 37+(4x+51)=180 | | 11v+9v=20 | | 8+32x=+12x+248 | | x-12=7;x=19 | | 5-5v=-22 |